【后勤保障与装备管理】

doi: 10.11809/bqzbgcxb2020.S1.025

某型库存地雷储存质量分析及寿命预测研究

陈建宏,高玉水

(陆军装甲兵学院,北京 100072)

摘要:对某型库存地雷的检测数据进行失效分析和评估,建立储存寿命测算模型,针对典型地爆器材进行分析、测算,建立了该型地爆器材失效率随时间变化的数学模型。研究结果表明:地雷引信的设计、生产和储存质量是决定地雷寿命的主要原因,引信的储存寿命决定了地雷的储存年限。

关键词:库存地雷;失效研究;失效分析;寿命预测;储存期限

本文引用格式:陈建宏,高玉水. 某型库存地雷储存质量分析及寿命预测研究[J]. 兵器装备工程学报,2020,41(S1): 101-104.

Citation format: CHEN Jianhong, GAO Yushui. Research on Storage Quality Analysis and Life Prediction of a Land Mine [J]. Journal of Ordnance Equipment Engineering, 2020, 41 (S1): 101 - 104.

中图分类号:TJ417

文献标识码:A

文章编号:2096-2304(2020)S1-0101-04

Research on Storage Quality Analysis and Life Prediction of a Land Mine

CHEN Jianhong, GAO Yushui

(Army Academy of Armored Forces, Beijing 100072, China)

Abstract: For the failure analysis and assessment of the detection data of an inventory mine, we established the storage life estimation model. Based on the analysis and calculation of typical ground explosive materials, the mathematical model of the failure rate of this type of mine explosive materials changing with time was established. The research shows that the design, production and storage quality of the mine fuze are the main factors determining the life of the mine. The storage life of the fuze determines the life of the mine.

Key words: storage mines; failure research; failure analysis; life prediction; storage period

地爆器材是我军武器装备的重要组成部分,库存地爆器材在储存过程中,因受到各种环境因素的影响,其性能将会发生变化,储存时间越长,变化的可能性就越大,一旦过期或失效,其可靠性和安全性就会显著下降,就应及时、有效处理,否则,不仅会影响到地爆器材的正常作战、训练保障,也容易发生燃烧、爆炸事故,并对仓库、部队和周边群众造成严重威胁,因此急需对其技术状况和质量变化程度做出准确判断。

储存可靠性是地爆器材的重要技术指标,直接关系到地

爆器材在储存、运输、作战、训练各环节的质量和安全。在地 爆器材的全寿命周期中,储存阶段通常是持续时间最长、储 存可靠性变化比较明显、储存可靠性数据获取最为可行的阶 段。通过对库存地爆器材进行持续的抽检检测、不断获取储 存可靠性数据,并进行技术分析,可以判定该种及同类地爆 器材的储存可靠性关键影响因素、查明易损部件(构件),为 新型号地爆器材的发展论证、技术研究、定型试验提供科学 依据。

国外一般没有地爆器材或地爆装备的概念,而是将地爆

收稿日期:2019-10-09;修回日期:2019-11-02

作者简介:陈建宏(1986—),男,工程师,E-mail:241364038@163.com。

通讯作者: 高玉水(1970—),男,硕士,副教授,E-mail: gaoyushui@ jiean. net。

器材归入弹药。根据相关资料,通过对库存弹药按标准规定的时间节点不断进行检测,不断积累数据,并对获取的数据进行分析,也是外军开展弹药储存可靠性指标论证、鉴定试验和相关技术开发的重要手段之一。

本文以某型库存地雷为例,通过数据分析和数理统计等方法,判断其质量变化程度,寻找在储存过程中其质量变化规律,预测储存寿命,从而为其储存、管理和改进提供决策依据。

1 研究对象选择

该研究以2个仓库作为这次试验样本数据的采集点,主要基于以下三点考虑:

- 1) 这 2 个仓库为后方仓库,管理有序,库存数量大、年限多,按生产厂、批次摆放,便于选样,可解决选得到的问题;
- 2) 本课题研究的核心是确定该地雷储存可靠度,其不 仅与储存时间有关,还与储存条件有关,即可靠度是储存时 间和储存条件的二元函数。

如果用失效数据解析这个二元函数,将十分困难。现将 上述2个仓库作为样本采集点,其两库又处于同一个储存条 件下,这样就固化了储存条件,把上述的二元函数转化为与 储存时间相关联的一元函数,简化了解析过程,解决了可操 作的问题。

3) 这2个仓库处于高温、高湿地区,其温度、湿度应力 对该地雷作用强,影响效果明显,从该库取样得出的试验数 据具有代表性,解决了对其他库的指导问题。

2 质量状况统计

根据2个仓库的抽样检测情况。该型地雷检测项目包括外观检查;引信的发火试验、击针簧扭力测定、销子剪切试验、动作可靠性和保险夹抗力测定;雷体的行程抗力测定、引信室深度测量、密封性试验、爆轰完全性试验等。通过试验发现的主要问题如下:

雷体行程抗力值部分超过标准值,占比15%。

雷体引信室深度尺寸偏大超上限,占比42%。

- 引信销子剪切力小于标准值,占比43%。
- 引信动作可靠性低,平均不合格率为37%。
- 引信击针簧扭力小于标准值,占比43%。

3 失效分析

行程抗力值超过抗力指标上限的地雷占 15%,超值较小,地雷对坦克碾压发火可靠性不会受影响。

引信室深度尺寸超出上限的地雷占 42%,从检查结果和 计算看,地雷引信室深度尺寸偏大,不会造成坦克碾压时地 雷瞎火,但已接近极限尺寸。 经综合统计,地雷引信销子剪切力试验结果见表1。

表1 销子剪切试验结果

- x	试验数/	剪切力偏	不合格
厂-年	个	小/个	率/%
A 厂 32 年	49	26	53
A 厂 31 年	24	15	62
A 厂 30 年	24	3	12
A 厂 29 年	50	8	16
B 厂 29 年	25		0
A 厂 28 年	146	77	53
A 厂 27 年	46	28	61
C 厂 26 年	9		0
A 厂 24 年	25	10	40
D 厂 23 年	24		0
A 厂 22 年	25	25	100

从试验数据来看,A厂引信,经22~32年的储存,销子强度低,各年都存在严重问题。特别值得注意的是后期引信的生产工艺由粘销改为整体销,仍存在销子强度低的问题。

经综合统计,引信动作可靠性试验结果见表 2。

表 2 动作可靠性试验结果

厂-年	试验数/个	未击发/个	未击发率/%
A 厂 32 年	50	13	26
A 厂 31 年	25	23	92
A 厂 30 年	25	25	100
A 厂 29 年	72	50	69
B 厂 29 年	25	11	44
A 厂 28 年	135	29	22
A 厂 27 年	50	5	10
C 厂 26 年	14		0
A 厂 24 年	25	3	12
D 厂 23 年	24	4	16

引信动作可靠性低的具体表现形式是:引信受力后未击发,平均占37%。引信是地雷的核心部件。从地雷发火原理可知:引信未击发,雷管不爆,药柱不炸,地雷失效。

经综合统计,击针簧扭力试验结果见表3。

结果显示:弹簧扭力偏小的情况各年都有发生,不合格比例;最低 2%,最高 76%,平均占 43%。

表3 击针簧扭力试验结果

次5 四八天下77 MAINE				
 厂-年	试验数/个	扭力偏小/个	不合格率/%	
A 厂 32 年	48	1	2	
A 厂 31 年	26	1	3	
A 厂 30 年	25	8	32	
A 厂 29 年	74	29	39	
B 厂 29 年	25	17	68	
A 厂 28 年	137	96	70	
A 厂 27 年	50	38	76	
C 厂 26 年	26	2	8	
A 厂 24 年	25	9	36	
D 厂 23 年	24	5	21	
A 厂 22 年	24	4	17	

4 寿命预测

由失效分析可知,引信击针簧扭力不足,会使引信内、外

套筒相对转动不到位,钢珠脱不出,击针不能释放,最后导致 引信不击发,是造成该引信动作可靠性低的主要原因。

A厂属该引信的底图单位,年产量高,是为该型地雷配套引信的主要工厂。该引信在储存中的质量变化具有较好的代表性。因此,预测该引信的储存寿命以A厂的该型引信试验数据为代表。

根据引信发火可靠性试验数据,计算该引信可靠度如 表 4。

表4 引信(A厂)发火可靠性试验数据

年限	样本数	失效数	失效率	可靠度
t	n	f	F(t)	R(t)
24	25	3	0. 12	0.88
27	50	5	0. 10	0. 9
28	135	29	0. 22	0.78
29	72	50	0. 69	0.31
30	25	24. 7	0. 99	0. 01
31	25	23	0. 92	0.08

Control of the Contro							
指数 -	X = t	24	27	28	29	30	31
	$Y = \ln 1 / R(t)$	0. 127 833	0. 105 360 5	0. 248 461	1. 171 18	4. 605 17	2. 525 729
\hat{r}	0.710 690 811						
- 1-	X = t	24	27	28	29	30	31
正态	Y = 1/F(t)	8. 333 333	10	4. 545 455	1. 449 28	1. 010 1	1. 086 957
\hat{r}	-0.836 042 241						
对数正态 -	$X = \ln(t)$	3. 178 054	3. 295 836 9	3. 332 205	3. 367 3	3. 401 2	3. 433 987
	Y = 1/F(t)	8. 333 333	10	4. 545 455	1. 449 28	1. 010 1	1. 086 957
\hat{r}	-0.826 092 127						
	$X = \ln(t)$	3. 178 054	3. 295 836 9	3. 332 205	3. 367 3	3. 401 2	3. 433 987
Z分布	$Y = \ln(1/R(t) - 1)$	-1.992 43	-2. 197 225	-1.265 67	0. 800 12	4. 595 12	2. 442 347
\hat{r}	0. 785 674 465 5						
威布尔 -	$X = \ln t$	3. 178 054	3. 295 836 9	3. 332 205	3. 367 3	3. 401 2	3. 433 987
	$Y = \ln \ln 1 / R(t)$	-2.057 03	-2. 250 37	-1.39247	0. 158 012	1. 527 18	0. 926 53
\hat{r}	0. 838 821 77						

采用分布拟合的方法:即将多个分布函数线性化,见表 5。将试验数据代入并线性回归分析,计算相关系数γ值。

$$\hat{\gamma} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

在满足 $|\gamma| > \gamma f, a($ 相关系数临界值)条件下,取 $|\gamma|$ 最大者作为母体的分布函数。计算值如表6所示。

表6 相关系数γ计算值

	相关系数γ	临界值 γf,a(a=0.1)
	<u> </u>	個別 (L)) ; a (a = 0. 1)
指数分布	0.7107	
Z概率分布	0. 785 7	0.729 3
威布尔分布	0. 838 8	

由表 6 可知:该引信在储存中可靠性的变化规律贴近威布尔分布。

对威布尔分布函数进行线性化:

$$F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)m}, \quad R(t) = e^{-\left(\frac{t}{\eta}\right)m}$$

$$\ln \frac{1}{R(t)} = \left(\frac{t}{\eta}\right)^m, \quad \ln \ln \frac{1}{R(t)} = m \ln t - m \ln \eta$$

$$\Leftrightarrow Y = \ln \ln \frac{1}{R(t)}, X = \ln t, B = m, A = -m \ln \eta$$

上式可简化为:

$$Y = A + BX$$

利用最小二乘法,求得:

A = -49.81863, B = 14.78484, $\hat{R} = 0.83882$ 威布尔分布线性化计算结果如图 1。

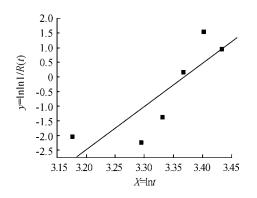


图1 威布尔分布线性化计算结果

因此 $m = 14.7848, \eta = 29.0664, 则威布尔分布函数为:$

$$F(t) = 1 - e^{-\left(\frac{t}{29.0664}\right)^{14.7848}}$$

可靠寿命 t_R

$$t_R = 29.066 \ 4 \times \left(\ln \frac{1}{0.95}\right)^{\frac{1}{14.78484}} = 23.776 \ 3$$

置信区间,经查表计算,

$$\lambda = 1.533$$
, $S = 1.603.8$, $\sqrt{\mu} = 1.080.1$

$$t_{R1} = \eta \left(e^{-\lambda s/\mu} \ln \frac{1}{0.95} \right)^{\frac{1}{m}} = 19.867 \ 3$$

$$t_{R2} = \eta \left(e^{\lambda s \sqrt{\mu}} \ln \frac{1}{0.95} \right)^{\frac{1}{m}} = 28.454 4$$

由此得出:引信的储存寿命为23年(储存可靠度下限0.95、置信度0.2、置信区间为19~28年)。

5 结论

- 1) 地雷引信的设计、生产和储存质量是决定地雷寿命的主要原因,引信的储存寿命决定了地雷的储存使用年限。
 - 2) 地爆器材随储存时间的增长,失效率变大。
- 3) 对于新型地爆器材装备,建议由设计单位充分利用已有的设计、生产、试验条件,给出客观科学的储存期限要求,供部队使用。

参考文献:

- [1] MORRIS H D. 概率论与数理统计[M]. 3 版. 房祥忠,等, 译. 北京:高等教育出版社,2005.
- [2] 徐向国,赵晓利. 某型制导弹药贮存寿命预测方法探讨 [J]. 四川兵工学报,2007(03):35-36.
- [3] 张志会. 高原环境弹药储存可靠性及评估方法研究 [D]. 南京:南京理工大学,2008.
- [4] 赵东华,张怀智,郭胜强,等. 基于灰色模型的某型末制导弹药贮存寿命预测[J]. 装备环境工程,2011,8(06): 28-30.
- [5] 马长刚,李青,陈明,等. 基于滤波模型的航空制导弹药剩余寿命分布[J]. 海军航空工程学院学报,2017,32 (04):395-400.
- [7] 黄强,廉振国,方延平. 预测弹药装药寿命常用方法的分析[J]. 弹箭与制导学报,1997(02):61-63.
- [8] 傅惠民,文歆磊,杨海峰. 仿真与试验相结合的寿命预测和可靠性评估[J]. 机电产品开发与创新,2019,32(05):4-7.

(责任编辑 唐定国)