【装备理论与装备技术】

转管武器机芯主滚轮滚动特性动力学分析

王海旭1,张鹏军1,杨一帆1,余朝发2

(1.中北大学 机电工程学院, 太原 030051; 2.陆军工程大学军械士官学校, 武汉 430000)

摘要:对转管武器凸轮曲线槽机芯主滚轮进行动力学分析;根据圆柱凸轮双面约束的特点,分析了滚轮在曲线槽内的横越运动,以及约束面改变引起摩擦力方向改变时滚轮的运动情况;通过理论计算与仿真分析,研究了机芯主滚轮在曲线槽内的纯滚动、滑动和混合区范围及滚轮的转速和角加速度变化,研究结果可为转管武器凸轮结构优化设计提供依据。

关键词:转管武器;动力学分析;圆柱凸轮;滚/滑运动

转管武器凸轮曲线槽主滚轮系统是一种典型的高速重载反圆柱凸轮系统,机芯运动加速度可达2 000~6 000 m/s2,速度可达10~30 m/s,且在极短的自动循环时间内存在供弹、开闭锁等复杂的受力状态[1]。机芯滚轮可以降低机芯与曲线槽之间的摩擦力,减少机芯与曲线槽之间的磨损。转管武器大多使用圆柱滚轮,这种滚轮在曲线槽中绕自身轴自由回转时,滚轮与曲线槽之间必须保证一定的间隙,间隙的存在会造成滚轮缺乏完善的约束,与曲线槽两侧交替接触,形成颤动现象,滚轮与曲线槽之间同时存在滚动和滑动运动[2]。此外,机芯运动状态改变时,因间隙的存在,滚轮在曲线槽中会发生失去接触的现象,待再次接触时会产生碰撞,引起剧烈振动,并产生噪声。碰撞时速度、加速度和接触力可能是无间隙状态下的几倍或者几十倍,称之为横越冲击现象[3]。薄玉成、徐健[1,4]等就高速反圆柱凸轮机构滚轮纯滚动动力学进行了分析,根据对凸轮体角加速度的判断和分析得到凸轮的运动状态,为尽量避免凸轮在运动过程中出现短暂非滚动状态提供了有效的解决途径。竺志超[5]等人研究了凸轮机构中滚子的纯滚动问题,导出滚子纯滚动的动力学条件,并以此为基础分析了机构结构参数、转速、外载、摩擦等对滚子纯滚动的影响关系。何雪明、张超洋[3,6]对横越冲击现象进行了动力学仿真和理论分析,并提出了防止横越冲击现象的方法。

文献[1]和文献[4]中对高速圆柱凸轮纯滚动条件的研究并没有考虑圆柱凸轮双面约束的特点,机芯开始减速运动时,机芯滚轮从一个约束面向另一个约束面横越运动,受力方向发生变化,滚轮运动是先减速运动,然后反向转动,文献[1]和文献[4]中忽略了这一特性,因此所给出的纯滚动条件具有一定的局限性。

通过对机芯滚轮运动特性进行理论计算与仿真分析,研究了机芯滚轮与曲线槽之间的力学关系,分析了转管武器机芯滚轮在曲线槽滚动和滑动的区域,以及机芯主滚轮的转速和角加速度变化规律。为转管武器凸轮结构优化设计提供依据。

1 机芯滚轮滚/滑运动分析

1.1 机芯主滚轮受力分析[7]

为方便受力分析,现将机芯简化,简化模型如图1所示。

图1 机芯简化模型示意图

参考文献[4]可得,机芯组件受力分析如图2所示,其中Fa为机芯轴向运动时受到的惯性力,RfrRfcR分别为机芯翻转力造成的摩擦力、离心力造成的轴向摩擦力、启动加速度造成的径向力,N为滚轮与曲线槽法相正压力,Nτ为垂直机芯运动方向的推力,Nf为机芯运动方向的推力, β为曲线槽压力角,μr为机芯滚轮滚动时静滑动摩擦系数。可以看出,当约束面发生变化,摩擦力r的方向不变,由于相对于滚轮的作用点发生变化,其对滚轮的转动力矩方向也发生改变。

图2 机芯组件受力分析

1.2 机芯滚轮滚/滑运动分析[1,4-5]

机芯主滚轮在曲线槽内的运动主要是滚动,在主滚轮纯滚动时,主要受到法向正压力N和静摩擦力Ff,相比法向正压力N和静摩擦力Ff,来自销轴的约束力是高阶小量,本研究中认为可以略去。机芯滚轮速度分解如图3所示。

图3 机芯滚轮速度分解

图中,vf为机芯滚轮速度的轴向分量,vt为机芯滚轮速度的周向分量。参考文献[8]中可得,机芯滚轮为纯滚动时:

(1)

(2)

式中:a为机芯轴向加速度; ω0为机芯滚轮转速;ε为滚轮角加速度。

当机芯由匀速段进入减速段,约束面改变,发生相对滑动摩擦时:

(3)

ω0=ω1-εt

(4)

式中:ω1为匀速段末滚轮转速。

2 数值计算与仿真分析

以某转管武器为例,其凸轮曲线槽为正弦加速度型,滚轮转动惯量J=1.587e-7 kg·m2,机芯中心回转半径R=32 mm,机芯组件质量Mb=0.35 kg,滚轮与曲线槽接触处摩擦因数 μr=0.1,角速度ω=36 π/s。

经计算,滚轮与曲线槽法向正压力N的变化曲线如图4所示,压力方向由曲线槽指向滚轮,且定义当机芯轴线方向上的压力分量指向射击方向时,法向正压力为负值。

图4 机芯滚轮与曲线槽法向正压力变化曲线

由图4可以看出,机芯运动由匀速段进入减速段时,法向正压力N跨越0值,方向改变,此时,机芯发生横越现象,曲线槽对滚轮的约束面发生变化,由图2所示曲线槽不同约束面与滚轮的接触关系可以看出,滚轮受到与转动方向相反的力,此时,滚轮与曲线槽间发生相对滑动。

为滚轮运动时所受静摩擦力Ff和理论最大静摩擦力r的变化曲线如图5所示,对比图4速度曲线可以看出,在非减速段,r值远大于Ff,由式(3)可知,在这些区段内,滚轮能够实现纯滚动。当滚轮进入曲线槽减速段,滚轮与曲线槽发生相对滑动,滚轮受到的摩擦力值等于最大静摩擦力。

图5 静摩擦力Ff和理论最大静摩擦力Nμr

根据上述分析,结合现有曲线槽基本结构,运用Matlab软件编程计算出滚轮运动速度和加速度,如图6、图7所示。图6为机芯滚轮角加速度变化曲线,图7为机芯滚轮角速度变化曲线。在减速段前段,滑动摩擦力与滚轮旋转方向相反,存在一个迅速增大的角加速度。图7所示滚轮角速度曲线可知,滚轮转速迅速下降并反向旋转,直到达到反向旋转时的纯滚动条件。

图7 机芯滚轮角速度曲线

图6 机芯滚轮角加速度曲线

为了验证上述计算结果的准确性,通过Matlab构造转管武器曲线槽轮廓线,并将数据点导入UG软件,建立自动机曲线槽模型,然后将带有曲线槽的自动机虚拟样机模型导入Adams软件进行动力学仿真。机芯部件的约束关系模型、自动机虚拟样机模型,分别如图8、图9所示。

图9 自动机虚拟样机模型

图8 机芯部件约束关系模型框图

如图8所示,转管武器组件之间施加如下约束副:机芯头与机芯体之间以圆柱副和碰撞副连接;机芯头与节套、行星体、开锁凸轮、闭锁凸轮之间均以碰撞副连接;机芯体与行星体之间主要以滑移副和碰撞副连接;节套与行星体之间通过固定副连接。

机芯滚轮角加速度和角速度变化情况的仿真结果分别如图10、图11所示。数值计算与动力学仿真结果对比分析如表1所示,机芯滚轮角速度与角加速度相对误差分别为3.26%、4.16%,两者基本相符。

图10 机芯滚轮角加速度仿真曲线

图11 机芯滚轮角速度仿真曲线

表1 数值计算与动力学仿真结果

数值计算(峰值)仿真计算(峰值)相对误差/%角速度/((°)·s-1)7.215×1046.987×1043.26角加速度/((°)·/s-2)1.611×1081.681×1084.16

根据仿真结果得出机芯滚轮在曲线槽内的滚动与滑动分布情况,如图12所示。

图12 机芯滚轮滚/滑运动分布情况示意图

根据上述仿真结果可知,机芯滚轮离开后直线段后进入过渡段,在过渡段与斜直线段,滚轮与曲线槽后约束面接触,在这一阶段,机芯滚轮能够实现纯滚动。

当机芯运动到横越点,机芯滚轮约束面由后约束面变成前约束面,摩擦力方向与滚轮转动方向相反,机芯滚轮与曲线槽发生相对滑动,故此区域为滑动区。

在滑动区内,机芯滚轮角速度减小,当滚轮角速度下降为零,由于摩擦力的作用,滚轮反向旋转,此时,滚轮与曲线槽间存在滚动与滑动两种状态,故此区域为混合区。

如果有足够大的摩擦系数,滚轮经过滑动区和混合区,将会在当前过渡段内再次实现纯滚动;但如果当前过渡段内的摩擦系数很小,不足以使滚轮反向实现纯滚动,当前过渡段将只存在滑动区和混合区。

对于圆柱滚子凸轮,为了使滚子旋转,曲线槽与滚子之间必须有足够的间隙,在前直线段内,机芯不受轴向压力,但击发时的振动激励会使滚轮在曲线槽内振动,与两个约束面交替接触,出现转速的波动[3]

当滚轮离开前直线段,机芯向后运动,由于开锁提供的较大轴向力,滚轮能在过渡段内实现纯滚动,在机芯向后运动过程中,滚轮将会重复上述过程。

3 结论

1) 机芯滚轮与曲线槽的法向正压力最大值出现在过渡段中部,适当增加过渡段摩擦因数,有利于减小滑动区与混合区宽度。

2) 转管武器凸轮结构优化设计时,应在较小压力处形成滑动或混合运动而在较大压力处实现纯滚动,有利于减小重载处的磨损,增加曲线槽的使用寿命。

参考文献:

[1] XU Jian,LI Qiang,YANG Zhen.Roller Dynamic Analysis and Pure Rolling Criterion for one type High Speed Cylinder Cam Mechanism[J].Journal of the Chinese Society of Mechanical Engineers,2016,37(4):315~323.

[2] 管荣法.凸轮与凸轮机构[M].北京:国防工业出版社,1993.

[3] 何雪明,何楷,武美萍,等.基于冲击模型的含间隙高速凸轮机构动力学分析[J].食品与机械,2017,33(09):84-89,93.

[4] 徐健,薄玉成,李强,等.高速反圆柱凸轮机构滚轮动力学分析[J].火炮发射与控制学报,2008(03):60-63.

[5] 竺志超.高速凸轮机构滚子的纯滚动力学条件[ J].机械设计,2001(4):4-8.

[6] 张超洋.冗余结构圆柱凸轮机构的研究[D].西安:陕西科技大学,2017.

[7] BREECH MECHANISM DESIGN.Engineeringdesign handbook:guns series automatic weapons[M].Headquarters,U.S.Army Materiel Command,1970.

[8] 薄玉成,徐健,李强,等.高速反圆柱凸轮机构滚轮纯滚动动力学分析[J].火炮发射与控制学报,2008(04):97-99.

Dynamic Analysis of Rolling Characteristics of Roller System for Gatling Gun

WANG Haixu1,ZHANG Pengjun1,YANG Yifan1,YU Chaofa2

(1.College of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China; 2.Ordnance NCO Academy, Army Engineering University of PLA, Wuhan 430000, China)

Abstract: Based on the main roller system of the dynamics of the main roller of camshaft curve groove of Gatling gun movement was analyzed. According to the characteristics of the double-sided constraint of the cylindrical cam, the traverse movement of the roller in the curved groove and the movement of the roller when the direction of the friction caused by the change of the constraint surface were analyzed. The detailed theoretical calculation and simulation analysis were carried out. The range of pure rolling, sliding and mixing zone of the main roller of the movement in the curved groove and the change of the rotational speed and angular acceleration of the roller were studied. The result can provide basis for the structural optimization design of the runner cam weapon.

Key words: gatling gun; dynamic analysis; cylindrical cam; rolling/sliding motion

收稿日期:2019-09-03;修回日期:2019-10-06

作者简介:王海旭(1994—),男,硕士研究生,主要从事外弹道仿真及应用研究,E-mail:136200319@qq.com。

通讯作者:张鹏军(1980—),男,博士,副教授,主要从事外弹道仿真及应用研究,E-mail:14837467@qq.com。

doi: 10.11809/bqzbgcxb2020.07.004

本文引用格式:王海旭,张鹏军,杨一帆,等.转管武器机芯主滚轮滚动特性动力学分析[J].兵器装备工程学报,2020,41(07):14-17.

Citation format:WANG Haixu,ZHANG Pengjun,YANG Yifan, et al.Dynamic Analysis of Rolling Characteristics of Roller System for Gatling Gun[J].Journal of Ordnance Equipment Engineering,2020,41(07):14-17.

中图分类号:TH112.2

文献标识码:A

文章编号:2096-2304(2020)07-0014-04

科学编辑 常思江 博士(南京理工大学)责任编辑 周江川