自第一次世界大战以来,防弹衣成为单兵防护装备的重要组成部分,在减少部队作战人员伤亡、提高单兵生存能力、增强作战效能方面发挥着重要作用。高性能纤维增强复合材料由于具有重量轻、防护性能高、无二次杀伤效应等优点,在软体防弹衣和硬体防弹衣中获得了广泛应用[1]。
纤维是高性能纤维增强复合材料结构的主要承载部分,它经历了从高强尼龙、高强玻璃纤维、碳纤维到芳纶、超高分子量聚乙烯(UHMWPE)等特种纤维的更新换代过程。表1为各种纤维的静态拉伸力学特性,UHMWPE纤维具有较高的断裂伸长率(3.7%),比强度是芳纶纤维的1.48倍,具有良好的能量吸收特性。同等面密度情况下,防弹能力比芳纶纤维抗弹复合材料高约25%[5-7]。在此背景下,通过研究UHMWPE纤维增强复合材料靶板的防护机理提高靶板的防护性能成为当前研究热点。
表1 纤维的静态力学特性[2-4]
Table 1 Static mechanical properties of fibers[2-4]
名称密度/(g·cm-3)弹性模量/GPa断裂伸长率/%断裂强度/GPaPA661.146200.9玻璃纤维2.54865.34.6碳纤维1.762401.43.4芳纶1.451242.52.76PBO1.561803.55.8UHMWPE0.961003.73.1
Kromm等[8]研究了应变率为0.001~0.01 s-1时70~140 ℃温度下SK75纤维束的力学特性;Huang[9]研究了UHMWPE纤维束在25 ℃、70 ℃下应变率为300 s-1和700 s-1时的力学性能;Russell等[10]研究了应变率为0.001~0.1 s-1时UHMWPE纤维束的力学特性;Koh等[11]采用Hopkinson杆研究了Spectra 900纤维束在应变率为100~400 s-1左右时的力学性能;张华鹏[12]利用Hopkinson杆研究了SK65纤维束在应变率为900 s-1时的力学性能和破坏模式,并利用弱环理论分析了纤维的强度分布特性;王庭辉等[13]采用Hopkinson杆测量了UHMWPE纤维在应变率2 500 s-1左右时纤维束的力学性能。上述研究结果表明:UHMWPE纤维具有显著的温度效应、应变率效应和尺度效应,即随着温度升高,纤维的弹性模量降低,70-140 ℃时其拉伸强度明显降低;纤维的弹性模量随应变率的增加而降低;拉伸强度对低应变率不敏感,对高应变率敏感;纤维的断裂应变随应变率的增加而降低;纤维束的拉伸强度只有纤维强度的1/3~1/2,延伸率却比纤维的高2.7倍以上。
由于UHMWPE纤维是高度取向的各向异性材料,一些研究者对UHMWPE纤维其他非拉伸方向的力学性能进行了研究。Sun[14]研究了Spectra纤维的剪切-拉伸双向静态和动态应力-应变关系,结果表明:随着剪应变增加,拉伸强度减小。Hudspeth等[15]研究了SK76纤维在剪切-拉伸作用下纤维的力学特性,结果表明:随着拉应力增加,纤维的剪切强度增加、失效应变减小。Guo等[16]研究了SK76纤维的横向静态压缩性能,利用Hopkinson杆研究其冲击压缩性能,结果表明:纤维在压缩应变小于50%时的应力-应变曲线没有显著的应变率效应。
按照预制体的结构,纤维增强复合材料可分为一维连续结构、二维平面结构和三维整体结构;按照预制体的织造工艺,又可分为编织、机织、针织和缝合等类型。为避免纤维在织造过程中的强度损失,UHMWPE纤维主要以单向布或正交复合的单向布——无纬布(两层单向布复合而成)作为复合靶板的组成单元。
曾庆敦[17]和李红周等[18]总结归纳了经典剪切滞后理论、链式统计模型、裂纹扩展模型、蒙特卡洛模拟在单向复合材料中的应用;Romanov等[19]、Ismail等[20-21]和Elnekhaily等[22]考虑单向布中纤维的不均匀分布特性,数值模拟研究了单向布的拉伸特性;Nazarian等[23]研究了无纬布的面内剪切应力-应变关系,假设无纬布层内由互补相连的筋板构成,数值模拟分析了无纬布的剪切变形情况;宋娜[24]和韩学群[25]通过内聚力单元法研究了准静态条件下无纬布层合板的层间分层现象;针对UHMWPE纤维表面非极性、与树脂粘结性能较差的缺陷,肖干[26]、王成忠等[27]、黄献聪[28]、邱军等[29]分别采用低温等离子表面处理、液相氧化-涂覆、电子束辐照和紫外接枝等工艺改善了UHMWPE纤维复合材料的力学性能;刘术佳[5]和Neema等[30]则分别研究了微颗粒改性树脂和纳米改性树脂对UHMWPE复合材料力学性能的影响。上述研究表明,单向布和无纬布的力学特性不仅和纤维、树脂本身的力学特性有关,还和纤维与树脂的结合界面、纤维布中纤维的分布特性等因素有关。
为达到相应的防护性能要求,单向布或无纬布通常以复合靶板的形式使用,主要包括:软防护靶板和硬质层合板(以单层之间是否粘结区分)。按照研究手段的不同,它们抗侵彻机理的研究可分为实验研究,理论研究和数值模拟研究。
对于软防护靶板,Chocron等[31]研究了弹头侵彻条件下单向布窄条和无纬布的变形运动规律;Karthikeyan等[32]研究了UHMWPE单向布铺层角度对防护性能的影响规律。文献[33-34]研究了UHMWPE改性树脂基无纬布的拉伸强度、抗弯强度和层间剥离强度;梁子青等[35]研究了基体含量对UHMWPE多层无纬布抗手枪弹侵彻性能的影响;高恒等[36]研究了UHMWPE纤维平纹织物与无纬布复合靶板的抗弹性能。Tan等[37]对比研究了平头弹和尖头弹侵彻Spectra单层无纬布的破坏模式。
对于硬质层合板,Lässig等[38]和Long等[39]通过实验设计获得了UHMWPE层合板的本构模型和破坏准则;李思辉[40]通过落锤冲击实验研究了不同铺层角度UHMWPE层合板的能量吸收性能;张典堂等[41]通过落锤冲击实验研究了UHMWPE层合板的破坏损伤模式和剩余压缩强度;Yang等[42]和Karthikeyan等[43]分别研究了弹头和球形破片侵彻层合板的破坏模式;Karthikeyan等[44]和王晓强等[45]分别研究了立方体破片侵彻性能随层合板厚度和破片入射角度的变化规律;Tomasz等[46]对比研究了2种UHMWPE纤维层合板的变形破坏模型。Zhang等[47-48]对比研究了UHMWPE无纬布、二维平纹和三维正交复合材料的防弹性能、破坏模式和背板鼓包变形规律。张佐光等[49],孙志杰等[50]和张大兴等[51]研究了UHMWPE层合板弹道吸能随面密度、弹速、成型压力、树脂基体含量的变化规律。
上述研究表明,侵彻条件下UHMWPE复合材料靶板会发生层间分层、层内开裂、纤维拔出等物理现象;靶板的防护性能与众多因素有关,包括树脂的种类与含量、纤维的力学性能、纤维与树脂的结合性能、靶板的结构和尺寸、弹头的外形和结构、弹头的入射角度和速度等。为获得符合要求的靶板,设计者需要消耗大量的精力进行实验研究。为降低实验成本,研究人员从理论和数值模拟方面对靶板的防护机理进行了研究。
Navarro等[52]、Parga-Landa等[53]和Sánchez-Gálvez等[54]假设纤维为弹性材料,不考虑软防护靶板的分层效应,基于波的传播理论建立了弹头正侵彻单向布和平纹织物的理论模型;Phoenix等[55]考虑UHMWPE和Kevlar复合靶板的分层现象,建立了弹头正侵彻复合靶板的理论模型;Long等[56]将弹头侵彻靶板的物理过程分为剪切阶段和背板鼓包阶段,建立了弹头侵彻靶板的弹道极限模型;Sánchez-Gálvez等[57]基于波传播理论,分析了侵彻过程中靶标主纱线、侧纱线的变形能和动能、靶板的层间开裂和剪切冲塞效应,建立了弹头斜侵彻无纬布层合板的理论模型;Chocron Benloulo等[58]和莫根林等[59]基于弹塑性理论分析了复合材料背板的变形运动,建立了弹头侵彻陶瓷/复合材料靶板的理论模型。总体而言,这些弹道模型在一定程度上满足了靶板防护性能的评估要求。由于模型通常没有考虑弹头材料以及靶板材料的本构模型和破坏准则,其适应范围有待进一步的实验验证。
Lässig等[38]和Long等[39]建立了球形破片侵彻UHMWPE无纬布层合板的宏观有限元模型,分析了模型参数对弹道极限的影响规律;为进一步分析靶板的纤维断裂、滑移、抽拔等破坏现象,Utomo[60]采用索单元作为纤维束的近似单元,建立了单向布的细观有限元模型;Barauskas等[61]在弹头冲击区域使用纤维和树脂构成的窄带模型替代单向布真实结构,在远离冲击区域使用均质正交各向异性壳单元替代单向布,实现了弹头侵彻无纬布的多尺度模拟。卓星伯通过建立单向布的纤维束模型、均质材料模型和两者的混合模型,对比研究了弹头侵彻单向布软防护靶板的运动规律。Chocron等[62-63]利用宏观有限元模型和窄带模型研究了弹头侵彻多层单向布的运动过程。Kudryavtsev等[64]建立了无纬布的窄带模型,并通过数值模拟研究了弹头侵彻多层无纬布的运动过程。上述研究表明,有限元模型考虑了靶板的组织结构和材料力学特性,在弹道极限和靶板鼓包变形方面能够获得较好的模拟结果。然而,模型中的本构模型和破坏准则的相关参数通常与材料的加工处理过程有关,现有研究尚未有效揭示它们之间的定量关系。
1)UHMWPE纤维具有比强度、比模量高的优点,在现代国防和高科技产业中发挥着越来越重要的作用,特别是在防弹装备上占据重要位置,具有极大的市场前景。
2)为设计出性能优越的防护装备,需要继续在本构模型和破坏准则方面探讨UHMWPE纤维及其复合材料靶板的力学特性,拓宽现有研究成果的适用范围,进一步研究UHMWPE单向布复合靶板在复杂力学状态下的力学响应和UHMWPE单向布复合靶板在侵彻条件下的破坏准则,尤其是纤维的断裂和靶板的分层鼓包准则。
3)在优化防弹装备的过程中,不仅需要注意制备工艺的影响,还需要充分发挥其他先进材料的优点,通过UHMWPE纤维和这些材料的复合,制备出各方面性能均较为优越的防护装备。
[1] 王浩.防弹衣及防弹用复合材料[J].高科技纤维与应用,2001,26(5):21-23.
Wang H.Bulletproof clothes and bulletproof compound materials[J].Hi-Tech Fiber & Application,2001,26(5):21-23.
[2] 张艳.超高分子量聚乙烯纤维在防弹和防刺材料方面的应用[J].产业用纺织品,2010,(10):32-39.
Zhang Y.The application of ultra high molecular weight polyethylene fiber on bulletproof and stab-resistant materials[J].Technical Texitiles,2010,(10):32-39.
[3] 郑志才,李根臣,王兆增,等.高强-4玻璃纤维复合材料性能研究[C]//中国科协2001年学术年会论文集.北京:中国科学技术出版社,2001:438.
Zheng Z C,Li G C,Wang Z Z,et al.Properties of high strength glassfiber-4[C]//Proceeding of the Annual Conference of 2001 China Association for Science and Technology.Beijing:China Science Technology Press,2001:438.
[4] 江建明,李光,金俊弘,等.超高性能PBO纤维的最新研究进展[J].合成纤维,2008,1(2):5-9.
Jiang J M,Li G,Jin J H,et al.The latest research developments of the super high performance PBO fiber[J].Synthetic fiber in China,2008,1(2):5-9.
[5] 刘术佳.微颗粒改性超高分子量聚乙烯纤维复合无纬布的研究[D].上海:东华大学,2010.
Liu S J.Study on the effect of particles on ultra high molecular weight polyethylene fiber reinforced UD plate[D].Shanghai:Dong Hua University,2010.
[6] 杨坤,朱波,曹伟伟,等.高性能纤维在防弹复合材料中的应用[J].材料导报,2015,29(7):24-28.
Yang K,Zhu B,Cao W W,et al.Application of high-performance fiber in bulletproof composite materials[J].Material Reports,2015,29(7):24-28.
[7] Karahan M.Comparison of Ballistic Performance and Energy Absorption Capabilities of Woven and Unidirectional Aramid Fabrics[J].Textile Research Journal,2008,78(8):718-730.
[8] Kromm F X,Lorriot T,Coutand B,et al.Tensile and creep properties of ultra high molecular weight PE fibres[J].Polymer Testing,2003,22(4):463-470.
[9] Huang W,Wang Y,Xia Y.Statistical dynamic tensile strength of UHMWPE-fibers[J].Polymer,2004,45(11):3729-3734.
[10] Russell B P,Karthikeyan K,Deshpande V S,et al.The high strain rate response of Ultra High Molecular-weight Polyethylene:From fibre to laminate[J].International Journal of Impact Engineering,2013,60(10):1-9.
[11] Koh A C P,Shim V P W,Tan V B C.Dynamic behaviour of UHMWPE yarns and addressing impedance mismatch effects of specimen clamps[J].International Journal of Impact Engineering,2010,37(3):324-332.
[12] 张华鹏.防弹材料冲击破坏机理及其纤维的衰减规律[D].上海:东华大学,2002.
Zhang H P.Failure mechanisms of ballistic resistant material and decay of its fibers.Shanghai:Dong Hua University,2002.
[13] 王庭辉,宋顺成,王明超,等.高强度纤维束的动态拉伸性能[J].西南交通大学学报,2008,43(5):638-642.
Wang T H,Song S C,Wang M C,et al.Dynamic tensile properties of high strength fiber bundles[J].Journal of Southwest Jiaotong University,2008,43(5):638-642.
[14] Sun J.Biaxial shear/tension failure criteria of spectra single fibers[D].West Lafayette:Purdue University 2014.
[15] Hudspeth M,Nie X,Chen W.Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension[J].Polymer,2012,53(24):5568-5574.
[16] Guo Z,Casem D,Hudspeth M,et al.Transverse compression of two high-performance ballistic fibers[J].Textile Research Journal,2016,86(5):502-511.
[17] 曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
Zeng Q D.Meso-failure mechanism and strength of composite materials[M].Beijing:Science Press,2002.
[18] 李红周,贾玉玺,姜伟,等.纤维增强复合材料的细观力学模型以及数值模拟进展[J].材料工程,2006(8):57-60.
Li H Z,Jia Y X,Jiang W,et al.Progress in numerical simulations and mesoscopic-mechanical models of fiber-reinforced composites[J].Journal of Materials Engineering,2006(8):57-60.
[19] Romanov V,Lomov S V,Swolfs Y,et al.Statistical analysis of real and simulated fibre arrangements in unidirectional composites[J].Composites Science & Technology,2013,87(9):126-134.
[20] Ismail Y,Sheng Y,Yang D,et al.Discrete element modelling of unidirectional fibre-reinforced polymers under transverse tension[J].Composites Part B Engineering,2015,73:118-125.
[21] Ismail Y,Yang D,Ye J.Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates[J].Composites Part B:Engineering,2016,90:485-492.
[22] Elnekhaily S A,Talreja R.Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution[J].Composites Science & Technology,2018,155:22-32.
[23] Nazarian O,Zok F W.Constitutive model for the shear response of Dyneema® fiber composites[J].Composites Part A,2014,66:73-81.
[24] 宋娜.单向纤维复合材料拉伸破坏机制和强度的研究[D].南京:南京航空航天大学,2008.
Song N.On tensile failure mechanism and strength of unidirectional fiber reinforced composite materials[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.
[25] 韩学群.复合材料层合板分层损伤数值模拟[D].武汉:武汉理工大学,2010.
Han X Q.Numerical simulation of delamination damage for composite laminates[D].Wuhan:Wuhan University of Technology,2010.
[26] 肖干.低温等离子体表面处理对UHMPE纤维复合材料性能的影响及测试[D].重庆:重庆大学,2004.
Xiao G.Effect of low-temperature plasma surface treatment on the function of UHMPE fibrous composite material and the test on it[D].Chongqing:Chongqing University,2004.
[27] 王成忠,李鹏,于运花,等.UHMWPE纤维表面处理及其复合材料性能[J].复合材料学报,2006,23(2):30-35.
Wang C Z,Li P,Yu Y H,et al.UHMWPE fibers with surface treatment and its composites properties[J].Acta Materiae Compositae Sinica,2006,23(2):30-35.
[28] 黄献聪.超高分子量聚乙烯纤维防弹复合材料的电子束辐照固化研究[D].上海:上海交通大学,2008.
Huang X C.Study on the electron beam radiation curing of ultra-high molecule weight polyethylene fiber ballistic composite.Shanghai:Shanghai Jiao Tong University,2008.
[29] 邱军,王增义,孙茜,等.表面改性和混杂对超高分子量聚乙烯纤维/环氧树脂复合材料性能的影响[J].材料研究学报,2015,29(11):807-813.
Qiu J,Wang Z Y,Sun Q,et al.Effect of surface modification and hybridization of UHMWPE fibers on performance of their composites with epoxy resin[J].Chinese Journal of Materials Research,2015,29(11):807-813.
[30] Neema S,Salehi-Khojin A,Zhamu A,et al.Wettability of nano-epoxies to UHMWPE fibers[J].Journal of Colloid & Interface Science,2006,299(1):332-341.
[31] Chocron S.Impacts and Waves in Dyneema® HB80 Strips and Laminates[J].Journal of Applied Mechanics,2013,1(2):472-481.
[32] Karthikeyan K,Kazemahvazi S,Russell B P.Optimal fibre architecture of soft-matrix ballistic laminates[J].International Journal of Impact Engineering,2016,88:227-237.
[33] 俞喜菊.防弹纤维复合材料中树脂的性能研究[D].上海:上海交通大学,2007.
Yu X J.Study on the properties of resins in bulletproof fiber reinforced composites[D].Shanghai:Shanghai Jiao Tong University,2007.
[34] 顾隽.UHMWPE纤维树脂复合材料的研究[D].上海:上海交通大学,2011.
Gu X.Study on UHMWPE fiber resin composites[D].Shanghai:Shanghai Jiao Tong University,2011.
[35] 梁子青,周庆,王韬,等.UHMWPE纤维/LDPE复合材料防弹性能及机理研究[J].纤维复合材料,2002,19(4):6-9.
Liang Z Q,Zhou Q,Wang T et al.A study on ballistic performance and mechanism of UHMWPE fiber/LDPE composites[J].Fiber Composites,2002,19(4):6-9.
[36] 高恒,杜建华,刘艺.超高分子量聚乙烯纤维二维织物抗弹性能研究[J].化工新型材料,2014(7):229-231.
Gao H,Du J H,Liu Y.Research on the ballistic performance of 2D fabric made of UHMWPE fiber[J].New Chemical Materials,2014(7):229-231.
[37] Tan V B C,Khoo K J L.Perforation of flexible laminates by projectiles of different geometry[J].International Journal of Impact Engineering,2005,31(7):793-810.
[38] Lässig T,Long N,May M,et al.A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations[J].International Journal of Impact Engineering,2015,75:110-122.
[39] Long H N,Lässig T R,Ryan S,et al.Numerical Modelling of Ultra-High Molecular Weight Polyethylene Composite under Impact Loading[J].Procedia Engineering,2015,103:436-443.
[40] 李思辉.UHMWPE/LDPE复合材料准静态侵彻和落锤冲击性能研究[D].上海:东华大学,2007.
Li S H.A study on the UHMWPE/LDPE composite laminates under quasi-static penetration and drop hammer impact[D].Shanghai:Dong Hua University,2007.
[41] 张典堂,陈利,孙颖,等.UHMWPE复合材料层板低速冲击及冲击后压缩性能实验研究[C]//第一届中国国际复合材料科技大会论文集.北京:中国复合材料学会.2013.
Zhang D T,Chen L,Sun Y,et al.Low velocity impact and residual compressive strength properties of UHMWPE composite laminates[C]//1st China International Congress on Composite Materials.Beijing:Chinese Society for Composite Materials.2013.
[42] Yang Y,Chen X.Investigation of failure modes and influence on ballistic performance of Ultra-High Molecular Weight Polyethylene(UHMWPE)uni-directional laminate for hybrid design[J].Composite Structures,2017,174:233-243.
[43] Karthikeyan K,Russell B P.Polyethylene ballistic laminates:Failure mechanics and interface effect[J].Materials & Design,2014,63(21):115-125.
[44] 王晓强,朱锡,梅志远,等.超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J].爆炸与冲击,2009,29(1):29-34.
Wang X Q,Zhu x,Mei Z Y,et al.Ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates[J].Explosion and Shock Waves,2009,29(1):29-34.
[45] 顾冰芳,龚烈航,徐国跃.UHMWPE纤维复合材料防弹机理和性能[J].纤维复合材料,2006,23(1):20-23.
Gu B F,Gong L H,Xu G Y.Ballistic resistance mechanism and performance of UHMWPE composites[J].Fiber Composites,2006,23(1):20-23.
T K,Iannucci L,Curtis P,et al.Investigation of the ballistic performance of ultra high molecular weight polyethylene composite panels[J].Composite Structures,2016,149:197-212.
[47] Zhang D,Sun Y,Chen L,et al.Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate[J].Materials & Design,2014,54(2):315-322.
[48] Zhang T G,Satapathy S S,Vargas-Gonzalez L R,et al.Ballistic impact response of Ultra-High-Molecular-Weight Polyethylene(UHMWPE)[J].Composite Structures,2015,133:191-201.
[49] 张佐光,霍刚,张大兴,等.纤维复合材料的弹道吸能研究[J].复合材料学报,1998,15(2):74-81.
Zhang Z G,Huo G,Zhang D X,et al.Study on ballistic energy absorption of fiber composites[J].Acta Materiae Compositae Sinica,1998,15(2):74-81.
[50] 孙志杰,张佐光,沈建明,等.UD75防弹板工艺参数与弹道性能的初步研究[J].复合材料学报,2001,18(2):46-49.
Sun Z J,Zhang Z G,Shen J M,et al.Preliminary study on the process parameters and ballistic properties of uhmwpe fiber composite laminates[J].Acta Materiae Compositae Sinica,2001,18(2):46-49.
[51] 张大兴,张佐光,仲伟虹,等.成型压力等因素对UD66靶板弹道性能的影响[J].北京航空航天大学学报,1999,25(4):378-380.
Sun D X,Zhang Z G,Zhong W H,et al.Experimental study on UHMWPE(Dyneema UD66)fiber composite armors[J].Journal of Beijing University of Aeronautics and Astronautics,1999,25(4):378-380.
[52] Navarro C,Rodríguez J,Cortés R.Analytical modelling of composite panels subjected to impact loading[J].Journal De Physique IV,1994,04(C8):515-520.
[53] Sánchez-Gálvez V,Paradela L S,Gálvez F.Analytical simulation of high-speed impact onto hybrid glass/carbon epoxy composites targets[J].Procedia Engineering,2014,88:101-108.
[54] Parga-Landa B,Hernández-Olivares F.An analytical model to predict impact behaviour of soft armours[J].International Journal of Impact Engineering,1995,16(3):455-466.
[55] Phoenix S L,Yavuz A K,Porwal P K.New interference approach for ballistic impact into stacked flexible composite body armor[C]//50th AIAA structures,structural dynamics,and materials conference.California:Palm Springs.2009.
[56] Long H N,Ryan S,Cimpoeru S J,et al.The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite[J].International Journal of Impact Engineering,2015,75:174-183.
[57] Sánchez-Gálvez V,Gálvez F,Sancho R,et al.A new analytical model to simulate high-speed impact onto composite materials targets[J].International Journal of Impact Engineering,2017.
[58] Chocron Benloulo I S,Sánchez-Gálvez V.A new analytical model to simulate impact onto ceramic/composite armors[J].International Journal of Impact Engineering,1998,21(6):461-471.
[59] 莫根林,吴志林,刘坤.弹丸侵彻陶瓷-UHMWPE复合材料靶板分析模型[J].南京理工大学学报,2013,37(5):670-674.
Mo G L,Wu Z L,Liu K.Analytical model of projectile penetrating ceramic-UHMWPE composite armor[J].Journal of Nanjing University of Science and Technology,2013,37(5):670-674.
[60] Utomo B D H.High-speed impact modelling and testing of dyneema composite[D].Delft:TU Delft,2011.
[61] Barauskas R,Abraitiene A.Multi-resolution finite element models for simulation of the ballistic impact on non-crimped composite fabric packages[J].Composite Structures,2013,104(4):215-229.
[62] Chocron S,Nicholls A E,Brill A,et al.Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and compression properties at high pressures[J].Composites Science & Technology,2014,101(8):32-40.
[63] Chocron S,Zaera R,Walker J,et al.Transitioning a unidirectional composite computer model from mesoscale to continuum[C]//11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading,2015.EPJ Web of Conferences.
[64] Kudryavtsev O,Sapozhnikov S.Yarn-level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact[J].PNRPU Mechanics Bulletin,2016,3:108-119.
Citation format:MO Genlin,LIU Jing,JIN Yongxi, et al.Review on Protective Mechanism of UHMWPE Fiber[J].Journal of Ordnance Equipment Engineering,2021,42(10):23-28.