运载系统运用工程专栏
轨道交通作为现代化社会中最重要的交通工具之一,在缓解交通堵塞和促进城市发展方面扮演着重要角色。随着时代的发展,城市轨道交通的客运压力不断增大,车门系统作为轨道车辆中结构最复杂、涉及零部件最多的系统,其故障频率也随着使用率的升高而不断增大,严重影响了列车运行的安全性和可靠性[1]。因此,需要一种准确、适用性高的车门系统故障诊断方法,以快速确定故障部件,提高检修效率,进而保障地铁高效安全运行。
对于车门故障诊断的相关研究,常用到的理论方法包括人工神经网络[2]、专家系统[3]、贝叶斯网络[4]、Petri网理论[5-6]等。其中,Petri网模型法具有数学逻辑严谨、物理意义明确、逻辑推理清晰等优点,适用于复杂的车门故障分析。该方法不仅可以快速判断发生的故障类型,还可以追溯故障发生线路,快速定位到故障发生点。Yaung等[7]基于传统Petri网理论引入了FPR权重的概念。在此基础上,针对多因果式网络结构,Ha等[8]在权重FPR模型中引入输入权重、输出权重,提出了FPN模型。Liu等[9]针对已有FPN模型提出了动态自适应模糊Petri网。该并行推理算法基于极大代数,可以结合专家系统动态完成逻辑推理。
传统模糊Petri网模型(TFPN)对于故障现象仅用隶属度一个参数来描述。但根据以往的工作经验得知,故障事件的发生还常伴随着不确定性,TFPN模型法却无法对此进行量化。本文中分析了现有车门故障模式及其影响,提出了一种基于球型模糊Petri网的地铁车门系统故障诊断模型。该模型能够更全面地评估故障事件发生的可能性,给出更可靠的故障传播路径推理结果,从而有效提升车门系统的安全性和可靠性。
车门系统结构复杂,车门的开启、关闭动作主要由电气控制模块、车门控制单元EDCU模块及机械动作模块3个模块来实现。电气控制模块与机械动作模块之间通过电子门控制器EDCU连接。电气控制模块负责将控制台发出的开门信号、零速信号、驱动电机运转信号等信息传递给电子门控制器EDCU。EDCU与电机之间产生交互信息,传递车门运动速度信号至机械运动模块。三者关联交互工作,共同控制车门系统的开关动作。车门系统结构原理如图1所示[11]。
图1 车门系统结构原理示意图
Fig.1 Door system structure
当需要开启车门时,车辆控制中心会向车门系统发送零速信号。列车如果处于自动驾驶模式(ATO)时将会自动将零速信号、开门信号传至EDCU。EDCU进而输出电信号驱动电机,通过电机带动机械动作模块来完成开门动作。当需要关闭车门时,EDCU同样会将从车辆控制中心收到的关门信号转为驱动电机运作的电信号。车门关好后,锁闭行程开关S1闭合,EDCU接收到车门关闭信号后传递给制动单元,制动单元对车门进行制动反馈,车门的止挡、嵌块、挡销等部件将会配合完成对车门的锁紧固定。工作流程如图2所示[12]。
图2 车门系统工作流程
Fig.2 Door system workflow
根据轨道交通车辆运行经验,总结了6种典型车门故障模式[13]:车门自动开关门故障、车门开门故障、车门关门故障、车门指示灯故障、开关门动作异响、车门操作装置故障。根据表1中故障树相关符号规则,建立车门系统故障模式故障树示意图。
表1 故障树事件符号和逻辑门符号
Table 1 Fault event symbol and logic gate symbol
符号顶事件中间事件底事件图形符号子树与门或门图形
建立车门系统故障模式故障树示意图,如图3—图10所示。
图3 顶事件故障树
Fig.3 Top event fault tree
图4 车门开门故障树
Fig.4 Door opening fault tree
图5 车门开门故障树子树
Fig.5 Door opening fault tree subtree
图6 车门关门故障树
Fig.6 Door closing fault tree
图7 车门自动开关门故障树
Fig.7 Automatic door opening and closing fault tree
图8 车门指示灯故障树
Fig.8 Door indicator fault tree
图9 开关门动作异响故障树
Fig.9 Fault tree of abnormal sound caused by door opening and closing
图10 车门操作装置故障树
Fig.10 Fault tree of door operating device
Petri网是20世纪60年代由卡尔·A·佩特里发明的一种用于描述异步、高并发复杂系统的网状结构信息流模型。它既有严格的数学表达式,也有清晰明确的图形表达方法。为了更好地实现Petri网对现实世界系统的描述,Chen等[14]基于事件的不确定性提出了模糊Petri网的概念。
球型模糊Petri网理论基于“球型模糊集”的概念,引入了“中立度”的概念。根据过往的故障维修及记录经验,中立度可以更好地描述专家及检修人员对故障模式的犹豫性。球型模糊Petri网可以定义为一个11元组:
(1)
式(1)中:P表示模糊Petri网中的库所,描述系统的局部状态;T表示变迁,描述使系统状态改变的事件;D为命题有限集;I为输入矩阵,描述库所到变迁的映射关系;O为输出矩阵,描述变迁到库所的映射关系;M表示库所内Token数目;表示故障事件、变迁信度值;
表示变迁触发阈值;WL表示库所指向变迁的权重;WG表示变迁指向库所的权重。
模糊Petri网中库所与变迁的交互关系如图11所示。“○”表示库所,“|”表示变迁,“●”表示Token,如果一个库所中含有一个Token,则证明此库所代表的状态正在发生。变迁与库所之间通过箭头“→”连接,表示变迁及其触发阈值的信度值。
图11 模糊Petri网模型
Fig.11 Fuzzy Petri net model
车门系统故障与Petri网模型的结构映射关系如表2所示。
表2 车门系统故障与模糊Petri网模型映射关系
Table 2 Mapping relationship between vehicle door failure and fuzzy Petri net model
地铁车门系统故障模糊Petri网地铁车门系统结构网络结构故障库所故障事件变迁故障间的传递变迁的触发故障系统状态Token分布
根据文献[13],车门典型故障模式包括车门开/关门故障、车门自动开关门故障、指示灯故障、开关门动作异响。根据图3~图10的故障树图示可以确定基本故障事件和上层故障模式类型及从属关系,如表3所示。
表3 故障事件与状态表
Table 3 Event and status
库所故障事件上一状态p1ATP故障-p2门使能继电器故障-p3ATC故障-p4EDCU故障-p5齿轮组件故障-p6保持继电器故障-p7插拔干涉-p8齿轮箱故障-p9人为因素(乘客拥挤、司机误操作)-
续表(表3)
库所故障事件上一状态p10电机组件故障-p11电源故障-p12导轨变形-p13定位销变形-p14电路设计问题-p15灯泡损坏-p16对中螺栓松动-p17垫片卡簧配合过紧-p18接线故障-p19钢丝绳松动-p20解锁撞块断裂-p21关门按钮故障-p22接线松动-p23解锁钢丝绳未调整好-p24解锁手柄定位珠丢失-p25开关S1故障-p26开关S2故障-p27开关S3故障-p28开关S4故障-p29开门按钮失效-p30螺母副故障-p31零速继电器故障-p32切除继电器故障-p33丝杆螺母润滑不足-p34嵌块变形-p35丝杆中间轴套磨损-p36门槛内有异物-p37门切除红灯故障-p38上导轨位置失调-p39平行度调节螺钉松动-p40切除开关故障-p41切除装置故障-p42中间解锁装置故障-p43长短导柱润滑不足-p44转臂螺丝与导轨干涉-p45位置传感器故障-p46锁闭装置故障-p47压轮过紧-p48速度传感器故障-p49下导轨变形-p50EDCU发出错误指令p4p51收到零速信号p3/ p31p52EDCU功能失效p4/ p11p53安全回路故障p3/ p28/ p25
续表(表3)
库所故障事件上一状态p54部件变形卡滞p12/ p13/ p30/ p34/p35/p44/ p49p55车门被切除p26/ p32p56关门阻力大p9/ p36/ p47p57灯控制电路接触不良p2+ p4p58解锁装置故障p7/ p19/ p20/ p42p59机械结构故障p13/ p30/ p35p60开门保持电路失效p6/ p14p61没有门使能信号p1+ p2/ p2 / p26/ p9p62润滑不足p33/ p43p63列车收到非零速信号p3/ p4/ p31/ p48p64门安全回路断开p1/ p28p65无开门信号p6/ p29p66无关门信号p4/ p25/ p28/ p45p67不能紧急解锁p24/ p27p68产生紧急制动p1/ p9/ p27/ p28p69车门关闭后自动开p50/ p51p70车门关锁到位时黄灯常亮p25/ p28p71车门尺寸异常p9/ p16/ p39p72电机无动作p5/ p8/ p10p73车门紧急解锁p9/ p27/ p46p74车门切除红灯常量p2/ p26/ p37p75车门无法切除故障p32/ p40/ p41p76解锁失效p27/ p58p77防夹功能启动障碍检测超限p56/ p59p78机构故障p30/ p35p79解锁后难复位p17/ p23p80门控信号错误p21/ p61/ p66p81开门阻力大p54/ p62p82开门后自动关闭p60/ p63p83开门黄灯不亮p15/ p25/ p28/ p57p84车门开门故障p72/ p76/ p80/ p81p85车门关门故障p72/ p73/ p77/ p80p86车门自动开关门故障p69/ p82p87车门指示灯故障p70/ p74/ p83p88开关门动作异响p54/ p63/ p71/ p78p89车门操作装置故障p67/ p68/ p75/ p79
注:表格中的“-”代表此故障没有上一级故障事件。“上一状态”中“/”表示状态之间的或关系,“+”表示状态之间的与关系。如对于p57“灯控制电路接触不良”,必须p2“门使能继电器故障”和 p4“EDCU故障”同时发生时p57才会发生;而对于p51“收到零速信号”,只要p3“ATC故障”和p31“零速继电器故障”二者之中有一个故障发生,p51即会发生。
根据表3的信息即可得出故障演变发生的路径及逻辑关系,进而可得到如图4所示的Petri网模型图。由于整体Petri网模型图过于复杂,仅展示p84“车门开门故障”、p85“车门关门故障” 的Petri网模型图为例。
图12中的结构关系均为“或”关系,未体现p57和p61 事件中“与”关系逻辑状态。如p57“灯控制电路接触不良”的上一状态为 “p2+ p4”,如图13所示。
图12 p84、p85车门故障模式球型Petri网模型示意图
Fig.12 The spherical Petri net model diagram of the door failure mode of events 84 and 85
图13 Petri网模型“与”关系示意图
Fig.13 Representation of “AND” relation in Petri net model
1) 基础事件信度值
表示故障模式发生的可能性,与故障发生频率密切相关。根据不同的球型模糊转化规则[15],现将TFPN模型法中的结果转化为球型模糊数。
对于日常监测的设备,隶属度不变,按照“中立度:非隶属度:不确定度”的比例进行模糊数据转化,有关规则如表4所示。
表4 模糊转化规则
Table 4 Fuzzy transformation rule
模糊程度传统模糊数范围转化比例清晰[0.9,1.0]2∶2∶1比较清晰[0.8,0.89]1∶1∶1比较模糊[0.6,0.79]1∶1∶2模糊[0.3,0.59]1∶1∶3非常模糊[0,0.29]1∶1∶4
对于不定期检修的设备,根据其易发性评级标准进行球型模糊数取值,如表5所示。
表5 部分设备易发性及其模糊数取值
Table 5 Part of equipment’s susceptibility and its fuzzy number value
故障模式易发性球型模糊数取值极易发(0.95,0.01,0.01)易发(0.85,0.05,0.05)比较易发(0.65,0.15,0.15)不易发(0.35,0.10,0.50)极不易发(0.10,0.10,0.75)
2) 变迁规则信度值
表示故障模式间发生传递的可能性,即A事件发生时,导致B事件发生的概率。其转化规则遵循表4。
3) 变迁规则触发阈值
表示故障模式发生的耐受程度。故障模式危险性越高,对其发生的容忍程度越低,相应阈值信度值越小。耐受程度的标定评级对应的转化规则如表6所示。
表6 变迁阈值判别规则
Table 6 Criterion of transition threshold
故障模式严重度系统耐受度的球型模糊数取值严重(0.08,0.08,0.8)比较严重(0.13,0.08,0.75)比较轻微(0.28,0.09,0.59)轻微(0.35,0.09,0.53)
4) 库所与变迁见有向弧权重(Wl、Wg)
Wl、Wg为库所输入变迁的权重,为变迁输出库所的权重。假设各有向弧权重相等,且权重总和为1。
5) 模型计算
① 计算初始库所状态:根据式(2)判断变迁是否会发生,得到库所状态矩阵M(1)
(2)
补充运算规则:设其中s、i、d分别表示隶属度、中立度、非隶属度,则
(3)
(4)
② 基于输入矩阵I计算输入库所信度值
(5)
(6)
③ 基于状态矩阵M(1)、输入库所状态值输出矩阵O计算输出库所信度值
(7)
④ 更新所有库所信度值
(8)
不断迭代计算,直至库所信度值不再变化,即得到所有故障事件的最终信度值。
由于篇幅限制,仅以车门开门故障模式为例进行模型求解。
1) 初始库所信度值
根据3.3节及表4、表5给出的计算规则,得到各库所初始信度值如表7所示。
表7中p54~p84并非基础故障事件,因此初始信度值为0,中立度为0,非隶属度为1。
表7 车门开门故障库所初始信度值
Table 7 Initial reliability value of door opening failure database
库所传统模糊数转化比球型模糊数p20.952∶2∶1(0.95,0.02,0.02)p50.541∶1∶3(0.54,0.09,0.09)p70.972∶2∶1(0.97,0.01,0.01)p9不易发-(0.35,0.10,0.50)p100.61∶1∶2(0.6,0.1,0.1)p130.721∶1∶2(0.72,0.07,0.07)p19极易发-(0.95,0.01,0.01)p200.922∶2∶1(0.92,0.03,0.03)
续表(表7)
库所传统模糊数转化比球型模糊数p260.21∶1∶4(0.2,0.13,0.13)p290.982∶2∶1(0.98,0.01,0.01)p300.181∶1∶4(0.18,0.14,0.14)p330.952∶2∶1(0.95,0.02,0.02)p350.61∶1∶2(0.6,0.1,0.1)p430.922∶2∶1(0.92,0.03,0.03)p540-(0,0,1)p580-(0,0,1)p620-(0,0,1)p650-(0,0,1)p720-(0,0,1)p760-(0,0,1)p800-(0,0,1)p810-(0,0,1)p840-(0,0,1)
2) 变迁信度值
变迁模糊数的转化同样遵循表4的转化规则,球形模糊数取值如表8所示。
表8 变迁、变迁阈值
Table 8 Transition threshold value table
变迁TFPN模糊数转化比球型模糊数t20.976 82∶2∶1(0.98,0.1,0.1)t50.537 11∶1∶3(0.54,0.09,0.09)t70.893 11∶1∶1(0.89,0.04,0.04)t90.500 01∶1∶3(0.5,0.1,0.1)t100.700 01∶1∶2(0.7,0.08,0.08)t130.895 01∶1∶1(0.90,0.03,0.03)t190.915 02∶2∶1(0.91,0.04,0.04)t200.951 22∶2∶1(0.95,0.02,0.02)t260.951 22∶2∶1(0.95,0.02,0.02)t290.891 31∶1∶1(0.89,0.04,0.04)t300.850 01∶1∶1(0.85,0.05,0.05)t330.920 02∶2∶1(0.92,0.03,0.03)t350.700 01∶1∶2(0.7,0.08,0.08)t430.941 02∶2∶1(0.94,0.02,0.02)t540.839 11∶1∶1(0.84,0.05,0.05)t580.839 11∶1∶1(0.84,0.05,0.05)t620.839 11∶1∶1(0.84,0.05,0.05)t650.839 11∶1∶1(0.84,0.05,0.05)t720.813 01∶1∶1(0.81,0.06,0.06)t760.761 01∶1∶2(0.76,0.06,0.06)t800.761 01∶1∶2(0.76,0.06,0.06)t810.761 01∶1∶2(0.76,0.06,0.06)
3) 变迁阈值信度值
根据故障模式危害分类[10],得到了各故障模式的严重度评级及其球型模糊数取值,如表9所示。
表9 变迁阈值
Table 9 Transition threshold value table
k严重度球型模糊数k2严重(0.08,0.08,0.8)k5比较轻微(0.28,0.09,0.59)k7严重(0.08,0.08,0.8)k9轻微(0.35,0.09,0.53)k10比较严重(0.13,0.08,0.75)k13比较严重(0.13,0.08,0.75)k19严重(0.08,0.08,0.8)k20严重(0.08,0.08,0.8)k26轻微(0.35,0.09,0.53)k29严重(0.08,0.08,0.8)k30轻微(0.35,0.09,0.53)k33严重(0.08,0.08,0.8)k35比较严重(0.13,0.08,0.75)k43严重(0.08,0.08,0.8)k54严重(0.08,0.08,0.8)k58比较轻微(0.28,0.09,0.59)k62严重(0.08,0.08,0.8)k65比较轻微(0.28,0.09,0.59)k72比较严重(0.13,0.08,0.75)k76比较轻微(0.28,0.09,0.59)k80比较轻微(0.28,0.09,0.59)k81比较轻微(0.28,0.09,0.59)
车门开门故障Petri网模型中,有23个库所,22个变迁,由此可以得到输入矩阵I、输出矩阵O如下:
其中,
局部权重取局部权重值相等,见式(9)(10)。
(9)
(10)
根据式(2)计算库所最初始状态M(1)
M(1)=(1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0)T
库所含有一个Token,即故障模式发生,状态为“1”,反之则为“0”,根据式(5)(6)计算输入库所信度值:
[(0.93,0.10,0.10),(0.29,0.13,0.13),
(0.86,0.04,0.04),(0.17,0.14,0.51),
(0.42,0.13,0.13),(0.65,0.08,0.08),
(0.86,0.04,0.04),(0.87,0.04,0.04),
(0.19,0.13,0.13),(0.87,0.04,0.04),
(0.15,0.15,0.15),(0.87,0.04,0.04),
(0.42,0.13,0.13),(0.86,0.04,0.04),
(0,0,1),(0,0,1),(0,0,1),(0,0,1),
(0,0,1),(0,0,1),(0,0,1),(0,0,1),(0,0,1)]
计算输出库所信度值
[(0.9,0.0,0.06),(0.0,0.0,1.0),
(0.42,0.1,0.17),(0.8,0.0,009),
(0.7,0.0,0.14),(0.39,0.01,0.18),
(0.84,0.0,0.07),(0.85,0.0,0.09),
(0.82,0.0,0.08),(0.0,0.0,1.0),
(0.81,0.0,0.08),(0.42,0.0,0.17),
(0.9,0.0,0.06),(0.31,0.0,0.16),
(0.0,0.0,1.0),(0.0,0.0,1.0),
(0.0,0.0,1.0),(0.0,0.0,1.0),
(0.0,0.0,1.0),(0.0,0.0,1.0),
(0.0,0.0,1.0),(0.0,0.0,1.0)]
根据式(1)~式(8)的方法计算出最终信度值,将其与TFPN模型结果[12]一起列表,如表10所示。
表10 模型故障模式信度值推理结果
Table 10 Comparison of inference results of reliability values of failure modes
库所TFPN信度值SFPN信度值严重度p540.66(0.55,0.12,0.12)较严重p580.78(0.71,0.07,0.07)严重p620.87(0.89,0.06,0.06)严重p650.63(0.61,0.12,0.12)较严重p720.57(0.61,0.12,0.12)较严重p760.28(0.36,0.14,0.14)轻微p800.39(0.44,0.19,0.19)轻微p810.73(0.69,0.1,0.1)较严重p840.56(0.51,0.14,0.14)一般
将TFPN模型与SFPN模型信度值作图,如图14所示。由图可知,两者信度值趋势大致相同,证明SFPN模型法具有可靠性。
图14 2种模型信度值曲线
Fig.14 Comparison of reliability values between two models
根据文献[16]中对球型模糊元中对球型模糊集的比较方法,可结合球型模糊值中的中立度、非隶属度数值对故障事件信度值严重程度进行进一步判断。
根据式(11)计算故障事件信度值的得分函数,再根据式(12)进行2个故障事件严重度的判断。
(11)
式(11)中,[0,q]为信度值取值范围,故此处取q=1。s、d为球型信度值中的隶属度、非隶属度。
S(T1)>S(T2), 则T1>T2
S(T1)<S(T2), 则T1<T2
(12)
当S(T1)=S(T2)时,需要根据式(13)进一步计算精度函数,并根据式(14)进行严重度判断。
(13)
式(13)中,s、i、d为隶属度、中立度、非隶属度。
S(T1)=S(T2)且A(T1)>A(T2),则T1>T2;
S(T1)=S(T2)且A(T1)<A(T2),则T1<T2;
S(T1)=S(T2)且A(T1)=A(T2),则T1=T2;
(14)
以解锁失效导致的车门开门故障为例,推演其故障传播路径,如表11所示。
表11 故障传播路径
Table 11 Comparison of fault propagation paths
模型故障传播路径TFPNp20→p58→p76→p84SFPNp7→p58→p76→p84
TFPN模型中推理的故障传播路径源头为p20“解锁撞块断裂”,如表7所示,初始模糊信度值为(0.92,0.03,0.03);SFPN模型给出的传播路径源头为p7“插拔干涉”,初始模糊信度值为(0.97,0.01,0.01)。
根据球型信度值中的隶属度,p7隶属度为0.97,p20隶属度为0.92,初步判断严重程度p7>p20。
根据式(11)计算得到p7和p20的得分函数分别为1.39和1.36,因此进一步判断严重程度p7>p20。由于二者得分函数不同,不需要进一步计算精度函数。
因此可以判断:最可能因解锁装置故障而导致车门开门故障的传播路径应为p7→p58→p76→p84。
由此可以得出结论,结合SFPN模型法中补充的中立度、非隶属度2个判断标准,该方法能比传统模型法更全面、准确描述故障模式。
所使用的基于球型模糊Petri网模型(SFPN)的车门故障诊断方法,在保证可靠性的同时,提升了准确性。SFPN模型法可以给出更准确的故障传播路径,适用于复杂地铁的故障诊断。故障发生时,检修人员可以根据该模型给出的推理路径进行逆向检索,快速确定故障发生源,有效提升检修工作效率。
[1] 刁心宏,李明华.城市轨道交通概论[M].北京:中国铁道出版社,2009.
Diao X H,Li M H.Introduction to urban rail transit[M].Beijing:China Railway Publishing House,2009.
[2] Bangalore P,Tjernberg L B.An artificial neural network approach for early fault detection of gearbox bearings[J].IEEE Transactions on Smart Grid,2017,6(02):980-987.
[3] Park Y M,Kim G W.A logic based expert system(LBES) for fault diagnosis of power system[J].IEEE Transactions on Power Systems,1997,12(01):363-369.
[4] Yongli Z,Limin H,Jinling L.Bayesian networks-based approach for power systems fault diagnosis[J].IEEE Transactions on Power Delivery,2006,21(02):634-639.
[5] Calderaro V,Hadjicostis C N,Piccolo A,et al.Failure identification in smart grids based on petri net modeling[J].IEEE Transactions on Industrial Electronics,2011,58(10):4613-4623.
[6] Jing S,Qin S Y,Song Y H.Fault diagnosis of electric power systems based on fuzzy Petri nets[J].IEEE Transactions on Power Systems,2004,19(4):2053-2059.
[7] Yeung D S,Ysang E.A multilevel weighted fuzzy reasoning algorithm for expert systems[J].IEEE Transactions on Systems Man and Cybernetics-Part A Systems and Humans,1998,28(2):149-158.
[8] Ha M H,Li Y,Wang X F.Fuzzy knowledge representation and reasoning using a generalized fuzzy petri net and a similarity measure[J].Soft Computing,2007,11(04):323-327.
[9] Liu H C,Lin Q L,Mao L X,et al.Dynamic adaptive fuzzy petri nets for knowledge representation and reasoning[J].IEEE Transactions on Systems Man & Cybernetics Part B,2013,43(06):1399-1410.
[10] 刘司朝.基于球型模糊Petri网的地铁车门系统故障诊断方法研究[D].北京:北京交通大学,2021.
Liu S C.Research on intelligent fault diagnosis method for ESP protector based on fuzzy petri nets[D].Beijing:Beijing Jiaotong University,2021.
[11] 刘晶.改进模糊Petri网在城轨列车客室车门系统故障诊断的应用研究[D].北京:北京交通大学,2014.
Liu J.Research on the application of IFPN in urban rail transit train passenger compartment door system fault diagnosis[D].Beijing:Beijing Jiaotong University,2014.
[12] 刘萍.基于故障树和模糊Petri网的城轨车辆塞拉门可靠性分析[D].南京:南京理工大学,2014.
Liu P.Reliability analysis of plug door of urban rail vehicles based on fault tree and fuzzy petri net[D].Nanjing:Nanjing University of Science and Technology,2014.
[13] 安琪.基于扩展Petri网的地铁车门系统故障诊断方法研究[D].北京:北京交通大学,2016.
An Q.The research of fault diagnosis method in railway door system based on the extended petri net[D].Beijing:Beijing Jiaotong University,2016.
[14] Chen S M,Ke J S,Chang J F.Knowledge representation using fuzzy petri nets[J].Knowledge & Data Engineering IEEE Transactions on,1990,2(03):311-319.
[15] Mahmood T,Ullah K,Khan Q,et al.An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets[J].Neural Computing & Applications,2018(02):1-13.
[16] 贾睿.语义球型模糊集的定义及相关性质[J].运筹与模糊学,2021,11(03):7.
Jia R.The definition of linguistic spherical fuzzy set and its related properties[J].Operations Research and Fuzziology,2021,11(03):7.
Citation format:QIN Yu, XU Yongneng.Research on fault diagnosis method of rail transit door based on SFPN[J].Journal of Ordnance Equipment Engineering,2022,43(09):90-100.