轴向移动内压力梁动力学的动网格法

郑伶俐1,3,华洪良2,吴小锋2,蔡宪逸4,廖振强3

(1.常州机电职业技术学院 机械工程学院, 江苏 常州 213164;2.常州工学院 航空与机械工程学院, 江苏 常州 213032;3.南京理工大学 机械工程学院, 南京 210094;4.国创移动能源创新中心(江苏)有限公司, 江苏 常州 213161)

摘要:面向轴向移动内压力梁结构动力学特性研究,采用Lagrangian方法建立了轴向移动内压力梁的运动控制方程,基于有限元动网格法对轴向移动梁运动控制方程进行离散。将内压力作为边界条件,采用Newmark-β时间积分方法计算轴向移动梁动力学响应,并开展动力学特性研究。结果表明,建立的有限元动网格模型能够有效地实现轴向移动内压力梁动力学响应计算。轴向移动内压力梁在收缩运动过程中,自由端振动频率将逐渐增加。悬臂长度对梁自由端振动频率具有显著影响。同时,结构振动频率随内压力的增加而增加。本文中建立的有限元动网格模型能够为轴向移动内压力梁动力学研究提供新方法。

关键词:轴向移动梁;动网格法;内压力;有限元法

0 引言

一维轴向移动系统结构动力学研究涉及较多的领域,工程中常见的有:液体输送管道[1]、起重缆绳[2-4]、传送带[5-7]、身管武器[10]、动力传输链[11-13]等。在以往的研究中经常将其作为轴向移动弦[14-16]和轴向移动梁模型[17-19]进行研究。一方面,很多学者集中于探讨轴向移动系统的非线性动力学特性,如:Farokhi[20]研究了平面与空间轴向移动梁的非线性动力学特性;Pechstein[21]基于绝对坐标系与有限元法建立了轴向移动粘弹性梁的单元运动方程;Yang[22]采用Galerkin方法研究了轴向移动梁轴向变形与横向动力学响应之间的耦合关系;Oz[23]与Ghayesh[24]研究了轴向移动梁时变轴向速度非线性动力学特性;Ghayesh[25]研究了轴向移动梁3∶1内共振横向动力学响应特性;Marynowski[26]采用Kelvin-Voigt两参数模型对轴向移动梁粘弹性进行建模与动力学分析。

另一方面,很多学者集中于探讨轴向移动梁的各种边界条件。因为不同的边界条件将对轴向移动梁的动力学特性产生较大的影响。如:时变轴向张力[27],固定横向简谐激励,移动横向简谐激励,随机横向激励[28-32],简支-阻尼支撑边界[33],摩擦边界[34],移动质量[35],自由端质量[36]等。对于身管武器而言,内压力边界普遍存在。在发射过程中武器身管结构横向振动与轴向浮动运动、膛压等因素相互耦合作用。身管轴向加减速运动导致身管产生动力刚化现象,从而影响其横向振动特性。在特定轴向运动频率下,横向振动会与轴向运动产生共振,使得横向振幅放大[37],从而影响射弹密集度[38]。当空心梁内部充满压缩流体,在梁发生弯曲变形时,其内部流体将产生反力抵抗梁的弯曲变形。如何实现轴向运动梁在内压力边界条件下动力学计算,是进一步深化身管武器动力学研究的关键。

为此,本文中首先通过受力分析建立内压力数学模型,基于有限元离散与Lagrangian方法推导了轴向移动梁的动网格运动方程,并采用Newmark-β法计算轴向移动梁动力学响应,研究内压力对轴向移动梁动力学特性的影响。

1 内压力模型

承受内部压力的梁段模型如图1所示(左)。梁截面为圆环,内径为r,曲率半径为R,弯曲角度为1。假设压缩气体在梁内部均匀分布,并且本文中不考虑气体质量的影响。梁段在弯曲变形过程中,轴线上半部分将被拉伸,轴线下半部分被压缩,梁在圆孔θ2/2处(图1右)长度差为:

图1 内压力梁受力分析
Fig.1 Force analysis of the BSIP

ΔdXπ/2=[(R+r)-(R-r)]dθ1

(1)

在任意θ2处,式(1)变为:

Δ dXθ2 = 2rsinθ21 = 2rsinθ2dX/R

(2)

式(2)中:θ2为径向分布角,如图1所示。则弧段对应的内孔拉伸与压缩侧表面积差在水平面上投影为:

Δ dsθ2 = 2r2sin2θ22dX/R

(3)

则整个梁段内孔拉伸与压缩侧表面积差可以通过对式(3)在弧段上积分得到:

ds=(2r2sin2θ2dX/R)dθ2r2y″(X,t)dX

(4)

式(4)中:y″(X,t)=1/R为曲率。

假设内压力为p(X,t),并考虑到内压力合力方向,单位长度梁所受横向载荷q(X,t)为:

q(X,t)=-πr2p(X,t)y″(X,t)

(5)

2 动力学控制方程及动网格离散

轴向移动梁物理模型如图2所示。梁总长度为LB,悬臂长度为L(t),截面积为A,惯性矩为I,杨氏模量为E,材料密度为ρ

图2 轴向移动梁模型
Fig.2 Axially moving beam model

假设梁轴向匀速运动,则轴向移动Rayleigh梁动能KE[19]

(6)

式(6)中: XY分别为梁结构上任意一点在坐标系O-XY下的横、纵坐标;Γ为梁截面相对Y轴的转角;上标(·)表示对时间求偏导;下标(X)表示对变量X求一阶偏导。KE1KE2分别表示梁结构在XY轴方向动能分量,KE3表示梁结构面内转动惯量。

梁弯曲变形引起的结构应变能SE

(7)

式(7)中:下标(XX)表示对变量X求二阶偏导。

则有

(8)

为了推导单元运动方程,将悬臂端梁划分为n个单元,单元长度为l(t)=L(t)/n,单元坐标系如图3。为了便于编程,在计算过程中保持梁单元数量n不变,不断调整单元网格长度,使网格动态地对梁空间进行自适应离散,实现梁的轴向运动模拟。

图3 单元坐标系
Fig.3 Element coordinate system

忽略梁的轴向变形,经过离散,得到

(9)

式(9)中:x为梁单元局部坐标系横坐标。

根据Hermite插值理论,构造动网格时变形函数

(10)

并对梁单元内任意一点(y,Γ)进行插值

y=Φq

(11)

Γ=Φxq

(12)

式(11)、式(12)中:

(13)

为单元节点位移。

采用式(11)、式(12)对式(9)进行离散,得到:

Li=

(14)

式(14)中:

m=ρAΦTΦdx

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

根据Lagrange方法以及式(14),并将内压力作为载荷边界,得到无约束单元运动控制方程

(24)

式(24)中:

Me(t)=m+m1

(25)

(26)

(27)

Fe(t)=q(X,t)ΦTdx

(28)

值得一提的是,式(15)—式(23)中mck均根据二次型形式进行定义。并且,式(26)中Ce(t)是由于梁的弯曲变形与轴向运动产生的陀螺项。通过组装得到系统整体运动方程

(29)

式(29)为一组含有时变参数的二阶常微分方程组,本文中采用Newmark-β法[36]进行求解。在每一时间步更新网格,得到时变M(t)、C(t)、K(t)、F(t)矩阵,并逐步推进,得到轴向移动梁动力响应。

3 算例

3.1 模型验证

为了研究轴向移动内压力梁模型的有效性,取文献[37]中Euler梁算例进行对比研究。该算例采用矩形截面梁,截面长度、宽度分别为0.152、0.009 5 m,材料密度为 2 770 kg/m3,杨氏模量为69 GPa。同时将内压力设为0,使得各项计算参数与文献[37]中保持一致进行对比研究。各算例参数如表1。

表1 验证算例参数
Table 1 Parameters of the validation example

算例初始长度/m速度/(m·s-1)自由端初始位移/m收缩3-0.10.01伸展1.80.10.005

图4(a)为轴向移动梁伸展运动时自由端横向振动位移响应。图4(b)为轴向移动梁收缩运动时自由端横向振动位移响应,响应曲线均与文献[37]吻合良好。

图4 自由端位移响应
Fig.4 Dynamic responses of the tip displacement

3.2 内压力影响研究

为了研究内压力对轴向移动梁动力学特性的影响,选取圆环截面梁进行研究。圆环梁截面内径为0.01 m,外径为0.015 m,材料密度为7 900 Kg/m3,杨氏模量为200 GPa。内压力大小分别为0、20、40、60 MPa。梁初始悬臂长度为1.1 m,梁自由端初始位移为0.005 m,伸展与收缩速度均为5 m/s。动力响应曲线如图5—图8。

图5 自由端位移响应
Fig.5 Tip displacement

图6 自由端速度响应
Fig.6 Tip velocity

图7 自由端频率
Fig.7 Tip frequency

图8 梁系统能量
Fig.8 Energy of the beam system

图5—图8分别为梁自由端位移、速度、瞬时频率、系统总能量响应曲线。在伸展过程中,梁自由端位移幅值逐渐增加,而速度幅值逐渐减小,并且振动频率逐渐下降。这是由于梁的伸展运动使得梁悬臂长度不断增加,梁结构整体刚度下降,体现为梁瞬时振动频率逐渐下降。在伸展过程中梁系统能量逐渐减少,这是因为陀螺项Ce(t)在伸展过程中为正,不断耗散系统能量导致,见图8(a)。

收缩过程中,梁自由端位移幅值逐渐减小,而速度幅值逐渐增加,系统振动频率不断增加。当悬臂长度趋于0时,其振动频率迅速增长并趋于无穷。这是由于梁做收缩运动时,悬臂长度逐渐缩短,结构整体刚度增加,使得自由端振动频率增加。在收缩过程中,陀螺项Ce(t)始终保持为负,使得系统在其固定边界处不断吸收能量,并最终产生自激振动,见图8(b)。在自激振动过程中,梁横向位移虽然较小,但振动速度幅值很大,系统能量迅速增加,并在一个较大的范围内波动。

内压力越大,轴向移动梁自由端横向振动速度幅值。这是由于在该算例中,在同样的初始条件(自由端横向位移0.005 m)下,内压力越大,轴向移动梁结构将存储更多的内压力势能,使其初始势能更大,如图8所示。在往复振动过程中,结构势能与动能相互转化,体现为更大的速度峰值。

同时,内压力越大,结构振动频率越高。这是由于梁结构发生弯曲变形时,其材料拉伸侧内孔表面积总是大于其材料压缩侧内孔表面积,在压力均匀作用下,合力总是指向材料拉伸侧,抵抗结构的弯曲变形。内压力的力学效应:相当于增加了结构刚度。因此,内压力越大,结构刚度越大,结构振动频率也越大。

4 结论

1) 采用Lagrangian方法建立了轴向移动内压力梁的运动控制方程,基于有限元动网格法对轴向移动内压力梁运动控制方程进行离散,将内压力作为边界条件,并采用Newmark-β时间积分方法研究了内压力对轴向移动内压力梁动力学特性的影响。

2) 轴向移动内压力梁在伸展(或者收缩)过程中,由于结构弯曲变形将产生陀螺项,使得系统成为非保守系统。伸展过程中,梁的总能量不断减少。而收缩过程中,梁的总能量不断增加,并最终产生自激振动。

3) 同时,内压力越大,结构振动频率越高。这是由于梁结构发生弯曲变形时,其材料拉伸侧内孔表面积总是大于其材料压缩侧内孔表面积,在压力均匀作用下,合力总是指向材料拉伸侧,抵抗结构的弯曲变形。内压力的力学效应相当于增加了结构刚度。因此,内压力越大,结构刚度越大,结构振动频率也越大。

参考文献:

[1]OZ H R,BOYACI H.Transverse vibrations of tensioned pipes conveying fluid with time-dependent velocity[J].Journal of Sound and Vibration,2000,236(2):259-276.

[2]ZHU W D,NI J,HUANG J.Active control of translating media with arbitrarily varying length[J].Journal of Vibration and Acoustics-Transactions of the Asme,2001,123(3):347-358.

[3]ZHU W D,CHEN Y.Forced response of translating media with variable length and tension:application to high-speed elevators[J].Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics,2005,219(1):35-53.

[4]ZHU W D,CHEN Y.Theoretical and experimental investigation of elevator cable dynamics and control[J].Journal of Vibration and Acoustics-Transactions of the Asme,2006,128(1):66-78.

[5]SUWEKEN G,VAN HORSSEN W T.On the transversal vibrations of a conveyor belt with a low and time-varying velocity.Part II:the beam-like case[J].Journal of Sound and Vibration,2003,267(5):1007-1027.

[6]PAKDEMIRLI M,OZ H R.Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations[J].Journal of Sound and Vibration,2008,311(3/5):1052-1074.

[7]PONOMAREVA S V,VAN HORSSEN W T.On the transversal vibrations of an axially moving continuum with a time-varying velocity:Transient from string to beam behavior[J].Journal of Sound and Vibration,2009,325(4/5):959-973.

[10]华洪良,廖振强,郭魂,等.机枪系统支撑发射动力学特性及散布精度研究[J].兵器装备工程学报,2022,43(1):42-47.

HUA Hongliang,LIAO Zhenqiang,GUO Hun,et al.Study on launch dynamics and dispersion accuracy of a machine gun system with supporting structures[J].Journal of Ordnance Equipment Engineering,2022,43(1):42-47.

[11]SANTHOSH G,KUMAR D.Anomalous transport and phonon renormalization in a chain with transverse and longitudinal vibrations[J].Physical Review E,2010,82(1):1-10.

[12]XU L X,YANG Y H,CHANG Z Y,et al.Modal analysis on transverse vibration of axially moving roller chain coupled with lumped mass[J].Journal of Central South University of Technology,2011,18(1):108-115.

[13]KUZKIN V A,KRIVTSOV A M.Nonlinear positive/negative thermal expansion and equations of state of a chain with longitudinal and transverse vibrations[J].Physica Status Solidi B-Basic Solid State Physics,2015,252(7):1664-1670.

[14]PONOMAREVA S V,VAN HORSSEN W T.On transversal vibrations of an axially moving string with a time-varying velocity[J].Nonlinear Dynamics,2007,50(1/2):315-323.

[15]KESIMLI A,ZKAYA E,BADATLI S M.Nonlinear vibrations of spring-supported axially moving string[J].Nonlinear Dynamics,2015,81(3):1523-1534.

[16]MALOOKANI R A,VAN HORSSEN W T.On resonances and the applicability of Galerkins truncation method for an axially moving string with time-varying velocity[J].Journal of Sound and Vibration,2015,344(1):1-17.

[17]LEE,KIM J H,OH H M.Spectral analysis for the transverse vibration of an axially moving Timoshenko beam[J].Journal of Sound and Vibration,2004,271(3/5):685-703.

[18]TANG Youqi,CHEN Liqun,YANG Xiaodong.Parametric resonance of axially moving Timoshenko beams with time-dependent speed[J].Nonlinear Dynamics,2009,58(4):715-724.

[19]HUA H L,QIU M,LIAO Z Q.Dynamic analysis of an axially moving beam subject to inner pressure using finite element method[J].Journal of Mechanical Science and Technology,2017,31(6):2663-2670.

[20]FAROKHI H,GHAYESH M H,AMABILI M.In-plane and out-of-plane nonlinear dynamics of an axially moving beam[J].Chaos Solitons &Fractals,2013,54(1):101-121.

[21]PECHSTEIN A,GERSTMAYR J.A lagrange-eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation[J].Multibody System Dynamics,2013,30(3):343-358.

[22]YANG X D,ZHANG W.Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations[J].Nonlinear Dynamics,2014,78(4):2547-2556.

[23]OZ H R,PAKDEMIRLI M,BOYACI H.Non-linear vibrations and stability of an axially moving beam with time-dependent velocity[J].International Journal of Non-Linear Mechanics,2001,36(1):107-115.

[24]GHAYESH M H,AMABILI M.Steady-state transverse response of an axially moving beam with time-dependent axial speed[J].International Journal of Non-Linear Mechanics,2013,49(1):40-49.

[25]GHAYESH M H,KAZEMIRAD S,AMABILI M.Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance[J].Mechanism and Machine Theory,2012,52(5):18-34.

[26]MARYNOWSKI K.Dynamic analysis of an axially moving sandwich beam with viscoelastic core[J].Composite Structures,2012,94(9):2931-2936.

[27]LEE U,OH H.Dynamics of an axially moving viscoelastic beam subject to axial tension[J].International Journal of Solids and Structures,2005,42(8):2381-2398.

[28]ZHENG P,YANG T Z,YANG X D,et al.An approximate analytical solution of an axially moving beam subjected to harmonic and parametric excitations simultaneously[J].Proceedings of First International Conference of Modelling and Simulation,Vol V,2008,340-345.

[29]GHAYESH M H,KAFIABAD H A,REID T.Sub-and super-critical nonlinear dynamics of a harmonically excited axially moving beam[J].International Journal of Solids and Structures,2012,49(1):227-243.

[30]LIU D,XU W,XU Y.Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation[J].Journal of Sound and Vibration,2012,331(17):4045-4056.

[31]SIMSEK M,KOCATURK T,AKBAS S D.Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load[J].Composite Structures,2012,94(8):2358-2364.

[32]YAN Q Y,DING H,CHEN L Q.Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations[J].Applied Mathematics and Mechanics-English Edition,2015,36(8):971-984.

[33]SANDILO S H,VAN HORSSEN W T.On boundary damping for an axially moving tensioned beam[J].Journal of Vibration and Acoustics-Transactions of the Asme,2012,134(1):1-10.

[34]LIU D,XU W,XU Y.Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations[J].Acta Mechanica Sinica,2013,29(3):443-451.

[35]刘宁,杨国来.移动质量作用下轴向运动悬臂梁振动特性分析[J].振动与冲击,2012,31(3):102-105.

LIU Ning,YANG Guolai.Vibration property analysis of axially moving cantilever beam considering the effect of moving mass[J].Journal of Vibration and Shock,2012,31(3):102-105.

[36]ROSSI D F,FERREIRA W G,MANSUR W J,et al.A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis[J].Engineering Structures,2014,80(2):118-136.

[37]华洪良,廖振强,张相炎.轴向移动悬臂梁高效动力学建模及频率响应分析[J].力学学报,2017,49(6):1390-1398.

HUA Hongliang,LIAO Zhenqiang,ZHANG Xiangyan.An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis[J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1390-1398.

[38]华洪良,廖振强,宋杰,等.弧形三脚架减振效果及射击精度改善研究[J].振动与冲击,2016,35(4):62-66.

HUA Hongliang,LIAO Zhenqiang,SONG Jie.Vibration reduction performance of an arc tripod structure for firing accuracy improvement[J].Journal of Vibration and Shock,2016,35(4):62-66.

The moving mesh method for the dynamics of an axially moving beam subject to inner pressure

ZHENG Lingli1,3, HUA Hongliang2, WU Xiaofeng2, CAI Xianyi4, LIAO Zhenqiang3

(1.School of mechanical engineering, Changzhou Mechanical and Electrical Vocational and Technical College, Changzhou 213164, China;2.School of Aeronautics and Engineering, Changzhou Institute of Technology, Changzhou 213032, China;3.School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;4.Guochuang Mobile Energy Innovation Center (Jiangsu) Co., Ltd., Changzhou 213161, China)

Abstract:To study the dynamic characteristics of an axially moving beam subjected to inner pressure, the equations of motion are obtained via Lagrangian method and are discretized using the finite element method with moving mesh. The dynamic responses of the axially moving beam subjected to inner pressure are analyzed by Newmark-β time integration method. The results show that: the established finite element dynamic mesh model could effectively achieve the computation of the dynamic response of axially moving internal pressure beams. During the contraction movement of the axially moving internal pressure beam, the frequency of free end vibration will gradually increase. The cantilever length has a significant effect on the free end vibration frequency of the beam. At the same time, the structural vibration frequency increases with the increase of internal pressure. The finite element dynamic mesh model established in this paper could provide a new method for the dynamic study of axially moving internal pressure beams.

Key words:axially moving beam; moving mesh; inner pressure; finite element method

本文引用格式:郑伶俐,华洪良,吴小锋.轴向移动内压力梁动力学的动网格法[J].兵器装备工程学报,2024,45(3):50-56.

Citation format:ZHENG Lingli, HUA Hongliang, WU Xiaofeng, et al.The moving mesh method for the dynamics of an axially moving beam subject to inner pressure[J].Journal of Ordnance Equipment Engineering,2024,45(3):50-56.

中图分类号:TG156

文献标识码:A

文章编号:2096-2304(2024)03-0050-07

收稿日期:2023-11-03;

修回日期:2023-11-29

基金项目:国家自然科学基金项目(52305008); 常州市科技计划项目(CJ20230038)

作者简介:郑伶俐(1981—),女,硕士,E-mail:191952961@qq.com。

通信作者:廖振强(1950—),男,博士,博士生导师,E-mail:zqliao1013@126.com。

doi: 10.11809/bqzbgcxb2024.03.007

科学编辑 汪国胜 博士(中国兵器工业集团第201研究所 研究员)

责任编辑 涂顺泽