稿件标题: | 基于FCSGRU的入侵检测半监督学习方法 |
稿件作者: | 马泽煊1,李进1,岳韶华1,吴暄1,吕启斌2 |
DOI: | 10.11809/bqzbgcxb2023.05.037 |
科学编辑: | 李声飞( 中国西南电子技术研究所高级工程师) |
栏目名称: | 信息科学与控制工程 |
关键词: | 半监督学习;网络入侵检测;代价敏感;模糊性;门控循环单元 |
文章摘要: | 现有的监督学习方法只能使用已标记样本对分类器进行训练,标签获取难度大、成本高,同时获得的样本易出现种类不平衡的情况,严重影响入侵检测模型的分析能力。为解决上述问题,提高入侵检测模型效果,提出了一种基于模糊代价敏感门控循环单元(fuzzycostsensitive gated recurrent unit,FCSGRU)的入侵检测半监督学习方法。该方法使用半监督学习和代价敏感方法来提高入侵检测系统的分类器性能,同时提高对少数类样本的检测能力。模型将代价敏感与门控循环单元结合,为无标签样本生成标签,同时依据模糊熵对样本进行划分。将其中的低模糊熵样本合并到原始训练集中,对分类器进行再次训练。基于NSLKDD和UNSWNB15数据集进行了对比试验,结果表明,提出的模型对于上述数据集的准确率分别能够达到99.30%和84.53%,和经典的CNNBiLSTM相比分别提升了0.08%和2.45%,对于少数类样本的检测准确率提高效果尤为显著。 |
稿件基金: | (61703426) |
引用本文格式: | 马泽煊,李进,岳韶华,等.基于FCSGRU的入侵检测半监督学习方法[J].兵器装备工程学报,2023,44(5):262-270. MA Zexuan, LI Jin, YUE Shaohua, et al.Semisupervised learning methods for intrusion detection based on FCSGRU[J].Journal of Ordnance Equipment Engineering,2023,44(5):262-270. |
刊期名称: | 2023年05期 |
出版时间: | 2023年5月 |
上线时间: | 2023年5月28日 |
浏览次数: | 2397 |
下载次数: | 44 |
免费阅读PDF 在线阅读 下载本期目录 下载本期封面 |